Indexed by:
Abstract:
Lithium-manganese-rich transition metal oxides have attracted substantial R&D attention due to their potential for high energy-density lithium-ion batteries. In this work, in situ high-energy X-ray diffraction was deployed to investigate the phase evolution during the solid-state synthesis of Li[Li0.2Mn0.54Ni0.13Co0.13]O-2. A step-wise consumption of the starting materials was observed during the one-step heating process primarily due to the heterogeneous nature of the precursor. According to observations from in situ high-energy X-ray diffraction, a two-step process was adopted to minimize the elemental heterogeneity of the final product. The electrochemical characterization results showed a substantial improvement on the reversible specific capacity for the material synthesized through the two-step process.
Keyword:
Reprint Author's Address:
Email:
Source :
NANO ENERGY
ISSN: 2211-2855
Year: 2017
Volume: 31
Page: 247-257
1 7 . 6 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:287
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0