Indexed by:
Abstract:
生物学研究表明,位置细胞是大鼠知晓当前所处空间位置的主要依据。由于网格细胞是位置细胞的主要信息输入源,因此需要构建由网格细胞到位置细胞的映射模型。针对这一问题,本文提出一种网格细胞到位置细胞的逆传播误差神经网络映射模型,实现在给定区域内对位置的精确表达。又依据边界细胞对环境边界特异性放电这一生理特性,实现利用边界细胞对网格野位相的周期性重置,使该模型完成任意大小空间中的位置认知。本文设计了仿真实验对比理论位置细胞板的活动情况,又分别对比竞争型神经网络模型的耗时和RatSLAM位姿细胞板的定位误差。实验结果表明,本文模型能够得到单一的位置野,并在耗时实验中较竞争型神经网络模型算法效率提高85.9...
Keyword:
Reprint Author's Address:
Email:
Source :
生物医学工程学杂志
Year: 2020
Issue: 01
Volume: 37
Page: 27-37
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0