Indexed by:
Abstract:
手写文字识别是计算机视觉、自然语言处理领域中的重要问题和研究热点.本文针对手写文字识别问题,提出一种基于双向LSTM网络的手写文字识别方法.首先根据数据集特点进行归一化等预处理;然后使用CNN网络对图像的特征进行提取;接着通过双向LSTM网络来记忆手写文字序列的字句关系,并对文字序列进行预测;最后使用CTC-Loss作为损失函数,可以让整句标注的训练集在上述网络下收敛.对比实验表明本文提出的算法模型的有效性.
Keyword:
Reprint Author's Address:
Email:
Source :
南京师大学报(自然科学版)
ISSN: 1001-4616
Year: 2019
Issue: 3
Volume: 42
Page: 58-64
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: