Indexed by:
Abstract:
为有效改善供水管网短期需水量预测模型在预测精度和稳定性方面存在的不足,提出在短期需水量预测模型基础上叠加残差预测模型的组合预测建模方法.首先采用贝叶斯最小二乘支持向量机法(Bayesian-LSSVM)建立管网用户需水量时间序列预测模型(BL模型),得到需水量预测初始值;对BL模型得到的需水量预测初始值的残差序列,构建基于贝叶斯最小二乘支持向量机法的混沌时间序列预测模型(RM模型),得到残差预测值;同时将RM模型得到的残差预测值实时补偿到BL模型的需水量预测初始值中,得到经过残差修正的需水量预测值.实例结果表明,RM模型可以准确捕获BL模型需水量预测初始值的残差变化趋势,对其残差序列进行准确预测;在短期需水量预测的精度和稳定性方面,由BL模型和RM模型叠加构成的组合预测模型(BL+RM模型)明显优于单一BL模型;BL +RM模型适用于平均需水量较小、水量波动性较大等不同特点用户的短期需水量预测,可有效满足实际工程的需要.
Keyword:
Reprint Author's Address:
Email:
Source :
哈尔滨工业大学学报
ISSN: 0367-6234
Year: 2019
Issue: 8
Volume: 51
Page: 88-96
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 2
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: