Indexed by:
Abstract:
车辆运行受多种风险因素共同作用,通过对G4京港澳(K1510—K1841)事故数据分析,建立风险因素体系,并利用粗糙集、事故危险度对风险因素实现重要性度量,利用AHP分析法确定风险因素权重,并通过BP神经网络实现不同风险条件下事故概率预测,实验证明,AHP-BP神经网络是预测风险条件下事故概率的有效模型.
Keyword:
Reprint Author's Address:
Email:
Source :
交通科技与经济
ISSN: 1008-5696
Year: 2019
Issue: 4
Volume: 21
Page: 37-42
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: