Indexed by:
Abstract:
为提升辅助驾驶系统的可靠性及安全系数,实现更高精度的行人检测,基于人体树图模型提出了一种改进的离线训练、在线检测的行人检测方法.首先,定义人体部件间的共生关系,得到对应父子部件对,结合K-means算法对其位置关系进行聚类获得部件类型.为兼顾类内紧密性与类间分离性,采用MSE和DBI构建具有两阶段适应度函数的混合粒子群聚类算法,在有效估计各部件最优聚类中心数量的同时,消除随机初始化对聚类准确率造成的影响.其次,将优化聚类得到的部件类型作为隐藏变量,通过求解隐结构SVM获取改进后的人体检测模型.最后,通过动态规划算法求解状态转移方程,在多个尺度上有效估计人体部件位置及检测包围盒,并结合非极大值抑制思想得到最终的行人检测结果.实验结果表明,所提方法在检测性能上明显优于5种行人检测方法,并且相比于原始Pose-original方法,在INRIA和ETH数据集上的丢失率分别下降了8.14%和5.05%.实验证明该方法检测性能良好且具有较高的准确性和鲁棒性.
Keyword:
Reprint Author's Address:
Email:
Source :
光学精密工程
ISSN: 1004-924X
Year: 2018
Issue: 7
Volume: 26
Page: 1802-1812
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: