• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xia, G. D. (Xia, G. D..) (Scholars:夏国栋) | Li, Y. F. (Li, Y. F..) (Scholars:李炎锋) | Wang, J. (Wang, J..) | Zhai, Y. L. (Zhai, Y. L..)

Indexed by:

Scopus SCIE

Abstract:

The characteristics of fluid flow and mass transfer in a novel micromixer with gaps and baffles are studied numerically and experimentally. Based on the principles of multiple vortices, abrupt contraction/expansion and twice split/recombine, the effects of gaps and baffles are investigated considering both mixing performance and pressure drop at Reynolds numbers ranging from 0.1 to 60. The mixing efficiency of the novel micromixer is found to be as high as over 94% at extremely low (Re = 0.1) or high Reynolds number (Re >= 40). The mechanism of mass transfer enhancement in the novel micromixer is analyzed by the field synergy principle. It is found that the novel micromixer is helpful to mass transfer enhancement which can be attributed to a good synergy between the velocity field and the concentration field. It is shown that the field synergy principle provides an alternative way to evaluate the performance of micromixers. In addition, the influence of the different locations of gaps and baffles on the mixing performance is analyzed. The comprehensive performance of micromixers is investigated by the field synergy principle and the ratio of the mixing index to the pressure drop (MI/PD). The merits of rapid mixing, low energy consumption and short mixing length make the novel micromixer more promising in microfluidic application. (C) 2015 Elsevier Ltd. All rights reserved.

Keyword:

Gap Baffle Comprehensive performance evaluation Micromixer Mass transfer enhancement Field synergy principle

Author Community:

  • [ 1 ] [Xia, G. D.]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Y. F.]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, J.]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China
  • [ 4 ] [Zhai, Y. L.]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 夏国栋

    [Xia, G. D.]Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER

ISSN: 0735-1933

Year: 2016

Volume: 71

Page: 188-196

7 . 0 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:166

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 48

SCOPUS Cited Count: 53

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:843/5322539
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.