Indexed by:
Abstract:
为了提高多目标粒子群算法优化解的多样性和收敛性,提出了一种基于多样性信息和收敛度的多目标粒子群优化算法(Multiobjective Particle Swarm Optimization based on the Diversity Information and Convergence Degree,dic-dMOPSO).首先,利用非支配解多样性信息评估知识库中最优解的分布状态,设计出一种全局最优解选择机制,平衡了种群的进化过程,提高了非支配解的多样性和收敛性;其次,基于种群多样性信息设计出一种飞行参数调整机制,增强了粒子的全局探索能力和局部开发能力,获得了多样性和收敛性较好的种群.最后,将dicdMOPSO应用于标准测试函数测试,实验结果表明,dicdMOPSO与其他多目标算法相比不仅获得了多样性较高的可行解,而且能够较快的收敛到Pareto前沿.
Keyword:
Reprint Author's Address:
Email:
Source :
电子学报
ISSN: 0372-2112
Year: 2018
Issue: 2
Volume: 46
Page: 315-324
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 5
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: