Indexed by:
Abstract:
针对时空数据数据量大和多维属性造成的索引效率低、关联关系建模难等问题,本文提出引入KD树结构进行静态多维数据建模与检索.同时结合机器学习中Linear Regression,SVR,Nearest Neighbors Regression等六种算法进行未来状态的预测.我们对比了六种常用学习算法,对预测结果的拟合情况进行分析,以天气预测为应用背景,对比得出具体环境下,KD树与SVR算法的结合检索速度快,预测精确.
Keyword:
Reprint Author's Address:
Email:
Source :
软件
ISSN: 1003-6970
Year: 2018
Issue: 8
Volume: 39
Page: 215-218
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 4
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: