Indexed by:
Abstract:
目的 针对某三级甲等医院电子病历中的非结构化部分(诊断和病情),建立多特征融合的条件随机场模型,自动化识别用自然语言描述的电子病历(electronic medical records,EMR)中的疾病和症状,从而实现电子病历信息的结构化存储,以利于电子病历的信息挖掘和统计分析.方法 将手动标注的语料库分为训练集和测试集,借助NLPIR工具分割文本,选择CRF++工具进行实验.针对中文电子病历的数据特点,先选取基本特征和相应的特征模板,通过不同上下文窗口的对比实验确定其大小;再分别添加引导词特征和构词结构特征,对比两种高级特征对实验结果的影响.结果 仅选取基本特征,上下文窗口为7时,识别效果最好;添加高级特征后,最终疾病实体F值为92.80%,症状实体F值为94.17%.结论 条件随机场模型融合多种有效的特征,可以很好地识别出电子病历中的疾病和症状实体.本研究对电子病历的命名实体识别有重要的意义.
Keyword:
Reprint Author's Address:
Email:
Source :
北京生物医学工程
ISSN: 1002-3208
Year: 2018
Issue: 3
Volume: 37
Page: 279-284,324
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 8
Chinese Cited Count:
30 Days PV: 0