Indexed by:
Abstract:
针对移动机器人在静态未知环境中的路径规划问题,提出了一种将深度自动编码器( deep auto-encoder)与Q学习算法相结合的路径规划方法,即DAE-Q路径规划方法。利用深度自动编码器处理原始图像数据可得到移动机器人所处环境的特征信息;Q学习算法根据环境信息选择机器人要执行的动作,机器人移动到新的位置,改变其所处环境。机器人通过与环境的交互,实现自主学习。深度自动编码器与Q学习算法相结合,使系统可以处理原始图像数据并自主提取图像特征,提高了系统的自主性;同时,采用改进后的Q学习算法提高了系统收敛速度,缩短了学习时间。仿真实验验证了此方法的有效性。
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2016
Issue: 5
Volume: 42
Page: 668-673
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 10
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: