Indexed by:
Abstract:
提出基于GM(1,1)-SVM的滚动轴承故障诊断及预测方法.首先,提取滚动轴承各类故障和正常状态下振动信号的时域及频域特征值,然后,选取重要特征参数建立预测模型,进行特征值预测;最后,使用轴承各类故障特征值和正常状态特征值训练二叉树支持向量机,构造滚动轴承决策树,判别故障,实现对故障类型的分类,从而达到对轴承故障诊断,并通过预测值与支持向量机实现故障预测的目的,突破传统算法不能有效预测轴承故障的局限性.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2015
Issue: 11
Volume: 41
Page: 1693-1698
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2