Indexed by:
Abstract:
We propose an image classification framework by leveraging the non-negative sparse coding, correlation constrained low rank and sparse matrix decomposition technique (CCLR-Sc+SPM). First, we propose a new non-negative sparse coding along with max pooling and spatial pyramid matching method (Sc+SPM) to extract local feature's information in order to represent images, where non-negative sparse coding is used to encode local features. Max pooling along with spatial pyramid matching (SPM) is then utilized to get the feature vectors to represent images. Second, we propose to leverage the correlation constrained low-rank and sparse matrix recovery technique to decompose the feature vectors of images into a low-rank matrix and a sparse error matrix by considering the correlations between images. To incorporate the common and specific attributes into the image representation, we still adopt the idea of sparse coding to recode the Sc+SPM representation of each image. In particular, we collect the columns of the both matrixes as the bases and use the coding parameters as the updated image representation by learning them through the locality-constrained linear coding (LLC). Finally, linear SVM classifier is trained for final classification. Experimental results show that the proposed method achieves or outperforms the state-of-the-art results on several benchmarks. (C) 2014 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
COMPUTER VISION AND IMAGE UNDERSTANDING
ISSN: 1077-3142
Year: 2014
Volume: 123
Page: 14-22
4 . 5 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:188
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 57
SCOPUS Cited Count: 64
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0