• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, Sihan (Liu, Sihan.) | Ma, Limin (Ma, Limin.) | Shu, Yutian (Shu, Yutian.) | Subramanian, K. N. (Subramanian, K. N..) | Lee, Andre (Lee, Andre.) | Guo, Fu (Guo, Fu.) (Scholars:郭福)

Indexed by:

EI Scopus SCIE

Abstract:

Previous studies have indicated that silanol in the form of polyhedral oligomeric silsesquioxane (POSS) trisilanol could form strong bonds with solder matrix without agglomeration, and inhibit diffusion of metal atoms when subjected to high ambient temperature and/or high current density. Addition of POSS-trisilanol has also been shown to improve the comprehensive performance of Sn-based Pb-free solders, such as shear strength, resistance to electromigration, as well as thermal fatigue. The current study investigated the whisker formation/growth behaviors of Sn-based Pb-free solders (eutectic Sn-Bi) modified with 3 wt.% POSS-trisilanol. Solder films on Cu substrates were aged at ambient temperature of 125A degrees C to accelerate whisker growth. The microstructural evolution of the solder films' central and edge areas was examined periodically using scanning electron microscopy. Bi whiskers were observed to extrude from the surface due to stress/strain relief during growth of Sn-Cu intermetallic compounds (IMCs). Addition of POSS-trisilanol was shown to retard the growth of Bi whiskers. The IMCs formed between POSS-modified solders and the Cu substrate showed smoother surface morphology and slower thickness growth rate during reflow and aging. It was indicated that POSS particles located at the phase boundaries inhibited diffusion of Sn atoms at elevated temperatures, and thus limited the formation and growth of IMCs, which resulted in the observed inhibition of Bi whisker growth in POSS-modified solders.

Keyword:

Sn-based solder isothermal aging Whisker

Author Community:

  • [ 1 ] [Liu, Sihan]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Limin]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Shu, Yutian]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Guo, Fu]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Subramanian, K. N.]Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
  • [ 6 ] [Lee, Andre]Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA

Reprint Author's Address:

  • [Liu, Sihan]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ELECTRONIC MATERIALS

ISSN: 0361-5235

Year: 2014

Issue: 1

Volume: 43

Page: 26-32

2 . 1 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:341

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 8

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:726/5309467
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.