Indexed by:
Abstract:
将核学习方法的思想和改进的选择C-均值聚类算法相结合,提出了一种改进的模糊核聚类算法,使其能对非超球体、含有噪音和离群点及样本不均衡的数据进行有效的聚类.通过引入高斯核函数,原样本的特征被非线性变换到高维核空间,提高了聚类性能.实验结果表明,该改进算法具有有效性.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2012
Issue: 9
Volume: 38
Page: 1408-1411
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 13
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: