Indexed by:
Abstract:
为控制锅炉燃烧向环境排放NOx造成的污染,提出了分级燃烧技术的综合优化方案.建立了基于人工神经网络及模拟进化算法的100MW火电机组锅炉分级燃烧优化模型,选取16个影响因子进行了分级燃烧的7个可调节参数优化,以达到机组的性能优化目标.锅炉负荷为100%、90%、80%及70%,相应神经网络训练次数分别为11523、14810、13410及19732时满足均方差要求.该神经网络模型优化时采用的种群数为80,交叉概率为0.8,变异概率为0.15.结果表明:锅炉效率和NOx排放量优化计算值同实测值相对误差低于1%;NOx平均排放量由原来的812mg/m3降为645mg/m3.
Keyword:
Reprint Author's Address:
Email:
Source :
清华大学学报(自然科学版)
ISSN: 1000-0054
Year: 2005
Issue: 5
Volume: 45
Page: 693-696
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 21
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: