Indexed by:
Abstract:
The problem of direct adaptive neural control for a class of nonlinear systems with an unknown gain sign and nonlinear uncertainty is discussed in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks (MNNs), and using Nussbaum-type function, a novel design scheme of direct adaptive neural control is proposed. By adopting the adaptive compensation term of the upper bound function of the sum of residual and approximation error, the closed-loop control system is shown to be globally stable, with tracking error converging to zero. Simulation results show the effectiveness of the proposed approach.
Keyword:
Reprint Author's Address:
Email:
Source :
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS
ISSN: 1201-3390
Year: 2006
Volume: 13
Page: 457-463
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: