Indexed by:
Abstract:
The appearance of a face will vary drastically when the illumination changes. Variations in lighting conditions make face recognition an even more challenging and difficult task. In this paper, we propose a novel approach to handle the illumination problem. Our method can restore a face image captured under arbitrary lighting conditions to one with frontal illumination by using a ratio-image between the face image and a reference face image, both of which are blurred by a Gaussian filter. An iterative algorithm is then used to update the reference image, which is reconstructed from the restored image by means of principal component analysis (PCA), in order to obtain a visually better restored image. Image processing techniques are also used to improve the quality of the restored image. To evaluate the performance of our algorithm, restored images with frontal illumination are used for face recognition by means of PCA. Experimental results demonstrate that face recognition using our method can achieve a higher recognition rate based on the Yale B database and the Yale database. Our algorithm has several advantages over other previous algorithms: (1) it does not need to estimate the face surface normals and the light source directions, (2) it does not need many images captured under different lighting conditions for each person, nor a set of bootstrap images that includes many images with different illuminations, and (3) it does not need to detect accurate positions of some facial feature points or to warp the image for alignment, etc. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
PATTERN RECOGNITION
ISSN: 0031-3203
Year: 2005
Issue: 10
Volume: 38
Page: 1705-1716
8 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 55
SCOPUS Cited Count: 79
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: