Indexed by:
Abstract:
With the rapid development of information technology, the problem of name ambiguity has become one of the main problems in the fields of information retrieval, data mining and scientific measurement, which inevitably affects the accuracy of information calculations, reduces the credibility of the literature retrieval system, and affect the quality of information. To deal with this, name disambiguation technology has been proposed, which maps virtual relational networks to real social networks. However, most existing related work did not consider the problem of name coreference and the inability to correctly match due to the different writing formats between two same strings. This paper mainly proposes an algorithm for Author Name Disambiguation based on Molecular Cross Clustering (ANDMC) considering name coreference. Meanwhile, we explored the string matching algorithm called Improved Levenshtein Distance (ILD), which solves the problem of matching between two same strings with different writing format. The experimental results show that our algorithm outperforms the baseline method. (F1-score 9.48% 21.45% higher than SC and HAC).
Keyword:
Reprint Author's Address:
Source :
DATABASE SYSTEMS FOR ADVANCED APPLICATIONS
ISSN: 0302-9743
Year: 2019
Volume: 11448
Page: 173-185
Language: English
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: