Indexed by:
Abstract:
The personalized video recommendation system provides users with great convenience while surfing in the video websites. Among many algorithms adopted by recommendation system, the collaborative filtering algorithm is the most widely used and has achieved great success in practical applications, however, the recommended performance suffers from the problem of data sparsity severely. We propose a model that adopts Doc2Vec to deal with video's text information and integrates genre information into rating matrix pre-padding to reduce the sparsity of ratings. The experimental results show that pre-padding ratings is of high quality and the algorithms based on collaborative filtering achieve better performance on the padded datasets.
Keyword:
Reprint Author's Address:
Email:
Source :
2018 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)
ISSN: 2376-6816
Year: 2018
Page: 164-167
Language: English
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: