Indexed by:
Abstract:
As one of the research hotspots in recent years, especially in pattern recognition, Convolutional Neural Network (CNN) is widely known for its high efficiency. However some researches show that there is a problem in the CNN which cannot learn the high-level features. In order to solve this problem, this paper proposes a new kind of image representation, which we call it "shape encoding maps". Our experimental results show that, in most cases, the recognition accuracies obtained by inputting the shape encoded maps to a CNN are higher than that of using the original image data for a CNN to learn directly without shape encoding.
Keyword:
Reprint Author's Address:
Email:
Source :
2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE
ISSN: 0277-786X
Year: 2018
Volume: 10836
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: