Indexed by:
Abstract:
Data mining is used to find useful information from massive data. Frequent pattern mining is one important task of data mining. Recently, the researches on frequent pattern mining for semi-structured data have made some progresses, and it also have a lot of focuses for data stream. However, only a few studies focus on both semi-structured data and data stream. This paper proposes an algorithm named SPrefixTreeISpan. We segment the semi-structured data stream first, and then uses the pattern-growth method to mine each segment. In the end, we maintain all the results on a structure called patternTree. At the same time, the mining algorithm is optimized by the inevitable parent-child relationship and the inevitable child-parent relationship extracted from XML schema. Experiment shows that SPrefixTreeISpan has better performance.
Keyword:
Reprint Author's Address:
Source :
PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY (FMSMT 2017)
ISSN: 2352-5401
Year: 2017
Volume: 130
Page: 1329-1336
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: