Indexed by:
Abstract:
In this paper, we proposed a segmentation approach that not only segment an interest object but also label different semantic parts of the object, where a discriminative model is presented to describe an object in real world images as multiply, disparate and correlative parts. We propose a multi-stage segmentation approach to make inference on the segments of an object. Then we train it under the latent structural SVM learning framework. Then, we showed that our method boost an average increase of about 5% on ETHZ Shape Classes Dataset and 4% on INRIA horses dataset. Finally, extensive experiments of intricate occlusion on INRIA horses dataset show that the approach have a state of the art performance in the condition of occlusion and deformation.
Keyword:
Reprint Author's Address:
Source :
PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2
Year: 2014
Page: 486-493
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1