Indexed by:
Abstract:
脑效应连接(Effective connectivity, EC)网络是人脑连接组研究中一项重要的研究课题,识别脑效应连接网络已成为评价正常脑功能及其与神经退化疾病相关损伤的一种有效手段.针对从功能性磁共振成像数据中进行脑效应连接网络的学习问题,提出了一种将多源信息与蚁群优化过程相融合的学习方法.新方法首先利用弥散张量成像数据获取感兴趣区域的结构约束信息,并利用正相关的皮尔森信息来压缩蚁群搜索的空间,以避免蚁群的许多不必要的搜索;然后在蚁群随机搜索中通过将体素联合激活信息融合于启发函数中,以增强蚂蚁搜索的目的性,改进算法的优化效率.实验结果验证了所提策略的有效性,与最新的同类算法相比,新算法在保持较快收敛速度的前提下,具有更好的求解质量.
Keyword:
Reprint Author's Address:
Email:
Source :
自动化学报
ISSN: 0254-4156
Year: 2021
Issue: 4
Volume: 47
Page: 864-881
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1