Indexed by:
Abstract:
针对在具有动态因素且视觉丰富环境中的导航问题,受路标机制空间记忆方式启发,提出一种可同步学习目标导向行为和记忆空间结构的视觉导航方法.首先,为直接从原始输入中学习控制策略,以深度强化学习为基本导航框架,同时添加碰撞预测作为模型辅助任务;然后,在智能体学习导航过程中,利用时间相关性网络祛除冗余观测及寻找导航节点,实现通过情景记忆递增描述环境结构;最后,将空间拓扑地图作为路径规划模块集成到模型中,并结合动作网络用于获取更加通用的导航方法.实验在3D仿真环境DMlab中进行,实验结果表明,本文方法可从视觉输入中学习目标导向行为,在所有测试环境中均展现出更高效的学习方法和导航策略,同时减少构建地图所需数据量;而在包含动态堵塞的环境中,该模型可使用拓扑地图动态规划路径,从而引导绕路行为完成导航任务,展现出良好的环境适应性.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机学报
ISSN: 0254-4164
Year: 2021
Issue: 3
Volume: 44
Page: 594-608
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3