• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Li (Zhang, Li.) | Peng, Yongzhen (Peng, Yongzhen.) (Scholars:彭永臻) | Soda, Satoshi (Soda, Satoshi.) | Huang, Xiaowu (Huang, Xiaowu.) | Wang, Yifei (Wang, Yifei.) | Zhang, Yanan (Zhang, Yanan.)

Indexed by:

EI Scopus SCIE

Abstract:

Anaerobic ammonium oxidation (anammox) is an energy saving and environmentally friendly technique for wastewater treatment. Sludge adsorption is an important process after organics enter the anammox reactor. The extracellular polymeric substances (EPS) of anammox sludge play a key role on the activity of anammox. This study utilized Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to investigate molecular-level compositional characteristics of the stratified EPS of the anammox sludge, and to explore the adsorption preference of each EPS layer to refractory dissolved organic matter (DOM) during anammox treatment. Results showed that the adsorbed component by the tightly bound EPS layer was dominantly composed of lipids and proteins, with nearly 80% of formulas being CHO and CHON. The outer layers (slime, loosely bound-EPS) preferentially adsorbed the compounds with comparatively higher aromatic and unsaturated degrees, with S-containing formulas and lignin being the predominant components. The newly produced formulas in the effluent were inferred to be associated with the anammox treatment performance. The refractory DOM, with smaller molecular weight and high reductive degree, seemed to experience a single adsorption by the stratified EPS, and became part of the anammox sludge. (C) 2020 Elsevier Ltd. All rights reserved.

Keyword:

Anammox Refractory dissolved organic matter Stratified EPS Adsorption FT-ICR MS

Author Community:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Yifei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Yanan]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Soda, Satoshi]Ritsumeikan Univ, Grad Sch Sci & Engn, Dept Civil & Environm Engn, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
  • [ 6 ] [Huang, Xiaowu]Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China

Reprint Author's Address:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENERGY

ISSN: 0360-5442

Year: 2020

Volume: 213

9 . 0 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 12

SCOPUS Cited Count: 14

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:1113/5328138
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.