• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Zhonglin (Chen, Zhonglin.) | Yang, Cuili (Yang, Cuili.) | Qiao, Junfei (Qiao, Junfei.) (Scholars:乔俊飞)

Indexed by:

EI Scopus SCIE

Abstract:

Long short-term memory (LSTM) neural network has been widely studied and applied in the real world. To obtain the LSTM neural network with better accuracy and more appropriate structure, the hybrid coding particle swarm optimization (HCPSO) algorithm is proposed. Firstly, the hybrid coding scheme is developed to represent the weights and structure of LSTM neural network, simultaneously. Then, the novel update mechanism is proposed to adjust the position of particles. Meanwhile, the discrete update strategy (DUS) and adaptive nonlinear moderate random search strategy (ANMRS) are proposed to enhance the convergence and global search capability of HCPSO, respectively. Finally, the effectiveness of HCPSO is demonstrated by multiple numerical examples. The experiment results show that the proposed HCPSO algorithm is more competitive in optimizing LSTM neural networks than other algorithms.

Keyword:

LSTM Update mechanism Convergence HCPSO Coding scheme Global search capability

Author Community:

  • [ 1 ] [Chen, Zhonglin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF SUPERCOMPUTING

ISSN: 0920-8542

Year: 2021

Issue: 5

Volume: 78

Page: 7227-7259

3 . 3 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:87

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count: 12

SCOPUS Cited Count: 15

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:591/5285626
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.