Indexed by:
Abstract:
Until recently, all known nitrite oxidation occurred in oxygen-rich conditions but now the oxidation of nitrite into nitrate within a low oxygen or anoxic environment has been observed in the ocean. However, this phenomenon is rarely reported in wastewater treatments and its mechanism is unknown. In this study, the partial nitrification and nitrite oxidation were conducted in no enough oxygen in order to remove nitrogen from landfill leachate, save energy, and save money. The results show that the NH4+-N removal efficiency was 99.4%. During phase I of the anaerobic sequential batch reactor (ASBR), no change in Chemical Oxygen Demand (COD) and ammonium were detected. The nitrite concentration decreased from 107 +/- 3 mg/L to 0.16 mg/L during 96 h of oxygen-deficiency, while NO3--N increased from 152.5 +/- 3 mg/L to 253.65 +/- 3 mg/L. The main microorganisms involved in this reaction in the ASBR were Nitrite-Oxidizing Bacteria (NOB), including Nitrospira and Nitrolancea, their relative abundances were 3.56% and 0.13%, respectively. The major NOB (Nitrospira) were confirmed by the further metagenomic binning analysis. This finding shows that nitrite oxidation can occur in oxygen-deficient conditions with specific NOB.
Keyword:
Reprint Author's Address:
Email:
Source :
ENVIRONMENTAL RESEARCH
ISSN: 0013-9351
Year: 2022
Volume: 214
8 . 3
JCR@2022
8 . 3 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:47
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: