Abstract:
近年来城郊山区成为城镇居民郊游佳选,而密集性的旅客出游及村民生产活动给山林带来火灾安全隐患.道路信息是森林防火应急信息化核心要素之一,但因城郊山区道路存在遮挡、阴影、路窄且多分支等问题,使得常规道路提取算法在城郊山区效果欠佳.故提出一种道路语义分割模型,以及一种将道路二类问题转化成多类问题的语义分割模型训练方法,迫使模型侧重学习空间距离信息,以生成空间连续性更优的道路结果.在本研究自主研制的城郊山区Yajishan道路数据集和公开数据集Massachusetts道路数据集上验证本文模型及训练方法的有效性.此外,验证该训练方法同样适用于U-Net、DeepLabV3等常用语义分割模型.还基于道路提取结果进行后处理,输出道路面、道路中心线矢量数据及道路宽度信息,并在北京丫髻山进行消防车通行性分析.研究成果在一定程度上缓解了商业电子地图在城郊山区少人处道路信息不足的问题,为森林防火应急救援提供信息化技术支撑.
Keyword:
Reprint Author's Address:
Email:
Source :
中国科学院大学学报
ISSN: 2095-6134
Year: 2022
Issue: 5
Volume: 39
Page: 658-667
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1