• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

李明爱 (李明爱.) | 彭伟民 (彭伟民.)

Abstract:

针对脑电信号(EEG)数据量过少的问题,提出一种基于残差模块(ResBlock)和自注意力(Self-Attention)机制的生成对抗网络(GAN),记为RBSAGAN.该模型首先对ResBlock进行改进,设计了Up ResBlock和Down ResBlock网络用于提取信号中不同尺度感受野的特征并对数据维度进行扩大和缩小;然后根据Self-Attention机制设计1D Self-Attention网络挖掘EEG中各离散时刻之间的时间相关性;最后通过生成器和判别器的对抗训练生成逼真的信号.该模型在公开的BCI Competition IV dataset 2a数据集进行了大量实验,结果表明,RBSAGAN具有生成接近于真实脑电信号样本的能力,并且将分类器1D卷积网络(CNN)的平均识别率提升至96.04%,可以为EEG数据增广任务提供参考.

Keyword:

生成对抗网络 自注意力机制 脑电信号 残差网络 卷积网络

Author Community:

  • [ 1 ] [彭伟民]北京工业大学
  • [ 2 ] [李明爱]北京工业大学信息学部,北京100124;北京市计算智能和智能系统重点实验室(北京工业大学),北京100124;教育部数字社区工程研究中心(北京工业大学),北京100124

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

计算机应用

ISSN: 1001-9081

Year: 2022

Issue: z1

Volume: 42

Page: 80-86

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:794/5290506
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.