Abstract:
目的 提出一种基于灰度检测和形态学重构的出血点(hemorrhages,HA)自动检测算法,以提高糖尿病视网膜病变(diabetic retinopathy,DR)眼底图像的质量和灵敏度.方法 对预处理后的图像进行灰度阈值分割,保留并提取出HA和血管特征,再利用形态学方法去除血管并消除图像边缘假阳性区域,形成新算法.用新算法测试公开数据库DIARETED1中的50幅图像(45幅HA病变图像,5幅正常图像),与专家人工判断结果进行比对验证.结果 该算法的灵敏度(sensitivity,SE)和特异性(specificity,SP)分别为93.33%和80.00%.结论 该算法可提升眼底图像质量和灵敏度,在不借助医生经验的条件下完成快速判定,很大程度提高了筛查的效率.
Keyword:
Reprint Author's Address:
Email:
Source :
北京生物医学工程
ISSN: 1002-3208
Year: 2022
Issue: 3
Volume: 41
Page: 255-259
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2