• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ao, Ci (Ao, Ci.) | Yan, Suying (Yan, Suying.) | Zhao, Xiaoyan (Zhao, Xiaoyan.) | Zhang, Na (Zhang, Na.) | Wu, Yuting (Wu, Yuting.)

Indexed by:

EI Scopus SCIE

Abstract:

The latent heat thermal energy storage device provides an alternative solution to the problem of imbalance between energy supply and demand. To enhance heat transfer, a series of latent heat thermal energy storage devices with novel concentric annular fins are proposed, as the design accelerates the melting and solidification processes of stearic acid. Based on the finite volume method, the enthalpy-porosity approach is employed to numerical simulation the charging/discharging process. Effects of the number and arrangement of concentric annular fins on the liquid fraction, melting and solidification front, melting uniformity, temperature uniformity, velocity uniformity and total melting and solidification time during melting and solidification are studied. Results showed that the melting and solidification rate increases with increasing fin number. The total melting and solidification times were reduced by 72.83% and 86.39%, respectively, for the case with 9 concentric annular fins compared to the bare tube. Both melting performance and temperature uniformity were improved. Further, the effect of fin arrangement on the melting and solidification performance was investigated with the same total volume of fins. Results revealed that the heat transfer performance of progressively shorter fin structures < uniformly distributed fins < progressively longer fins < performance of non-uniformly distributed fin arrangement. The non-uniform fin arrangement reduces the total melting and solidification time of stearic acid by 85.46% and 90.11%, respectively, compared to bare tube. This work provides new insights into the understandings of the transient phase change process and the strategies for guiding the design for thermal energy storage devices using annular fins.

Keyword:

Numerical simulation Non -uniform fin design Melting and solidification time Thermal energy storage Concentric annular fins

Author Community:

  • [ 1 ] [Ao, Ci]Inner Mongolia Univ Technol, Coll Energy & Power Engn, Hohhot 010051, Peoples R China
  • [ 2 ] [Yan, Suying]Inner Mongolia Univ Technol, Coll Energy & Power Engn, Hohhot 010051, Peoples R China
  • [ 3 ] [Zhao, Xiaoyan]Inner Mongolia Univ Technol, Coll Energy & Power Engn, Hohhot 010051, Peoples R China
  • [ 4 ] [Zhang, Na]Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
  • [ 5 ] [Wu, Yuting]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

APPLIED THERMAL ENGINEERING

ISSN: 1359-4311

Year: 2023

Volume: 231

6 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:1127/5331377
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.