• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Fang Juan (Fang Juan.) | Teng Ziyi (Teng Ziyi.) | Yang Huijing (Yang Huijing.) | Lu Shuaibing (Lu Shuaibing.)

Indexed by:

incoPat

Abstract:

本发明涉及一种基于有效联邦学习的移动边缘缓存优化方法,属物联网、人工智能领域。该方法考虑单基站范围内用户移动性和内容流行度不断变化的情况,通过预测内容流行度,将请求内容提前放置到边缘缓存来提高缓存命中率。具体利用RWP随机路径点模型得到用户时刻轨迹表模拟用户的移动路径,考虑到本地训练消耗,通过聚类与阈值结合的方式选择参与FL本地训练的用户,用注意力机制控制模型权重进行全局模型聚合,根据得到的全局预测模型,提前将预测的请求内容缓存到服务器来提高缓存命中率。该方法利用联邦学习方法,优化客户端选择和权重聚合,实现有效的联邦学习方法以此减少本地训练消耗,提高缓存命中率。

Keyword:

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Patent Info :

Type: 发明申请

Patent No.: WOCN22092686

Filing Date: 2022-05-13

Publication Date: 2023-09-14

Pub. No.: WO2023168824A1

Applicants: Beijing University Of Technology

Legal Status: 进入国家阶段-PCT有效期内

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:578/5307775
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.