• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

黄志清 (黄志清.) | 许哲健 (许哲健.)

Indexed by:

incoPat

Abstract:

本发明公开了基于联邦深度强化学习的无人驾驶决策与控制模型训练方法,该方法一共分为四步:初始化、数据处理、客户端无人驾驶决策与控制的深度强化学习、联邦学习。本发明能够保证客户端数据不出本地的前提下,进行联邦学习训练,达到对无人车在不同场景下进行决策与控制的效果。实验测试,无人车能够在不同测试场景下完成驾驶,并且能够保持更稳定的速度及车辆控制。

Keyword:

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Patent Info :

Type: 发明申请

Patent No.: CN202110999651.6

Filing Date: 2021-08-29

Publication Date: 2022-01-04

Pub. No.: CN113885491A

Applicants: 北京工业大学

Legal Status: 实质审查

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:902/5289821
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.