• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Boyue (Wang, Boyue.) | Ma, Yujian (Ma, Yujian.) | Li, Xiaoyan (Li, Xiaoyan.) | Gao, Junbin (Gao, Junbin.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.) (Scholars:尹宝才)

Indexed by:

Scopus SCIE

Abstract:

The objective of visual question answering (VQA) is to adequately comprehend a question and identify relevant contents in an image that can provide an answer. Existing approaches in VQA often combine visual and question features directly to create a unified cross-modality representation for answer inference. However, this kind of approach fails to bridge the semantic gap between visual and text modalities, resulting in a lack of alignment in cross-modality semantics and the inability to match key visual content accurately. In this article, we propose a model called the caption bridge-based cross-modality alignment and contrastive learning model (CBAC) to address the issue. The CBAC model aims to reduce the semantic gap between different modalities. It consists of a caption-based cross-modality alignment module and a visual-caption (V-C) contrastive learning module. By utilizing an auxiliary caption that shares the same modality as the question and has closer semantic associations with the visual, we are able to effectively reduce the semantic gap by separately matching the caption with both the question and the visual to generate pre-alignment features for each, which are then used in the subsequent fusion process. We also leverage the fact that V-C pairs exhibit stronger semantic connections compared to question-visual (Q-V) pairs to employ a contrastive learning mechanism on visual and caption pairs to further enhance the semantic alignment capabilities of single-modality encoders. Extensive experiments conducted on three benchmark datasets demonstrate that the proposed model outperforms previous state-of-the-art VQA models. Additionally, ablation experiments confirm the effectiveness of each module in our model. Furthermore, we conduct a qualitative analysis by visualizing the attention matrices to assess the reasoning reliability of the proposed model.

Keyword:

cross-modality analysis Caption bridge visual question answering (VQA) contrastive learning

Author Community:

  • [ 1 ] [Wang, Boyue]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Yujian]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xiaoyan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Li, Xiaoyan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

Year: 2024

1 0 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:611/5306773
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.