• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Ming (Yang, Ming.) | Li, Yun-Zhang (Li, Yun-Zhang.) (Scholars:李云章)

Indexed by:

Scopus SCIE

Abstract:

Quaternion algebra is a noncommutative associative algebra. Noncommutativity limits the flexibility of computation and makes analysis related to quaternions nontrivial and challenging. Due to its applications in signal analysis and image processing, quaternionic Fourier analysis has received increasing attention in recent years. This paper addresses phase retrievability in quaternion Euclidean spaces HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}<^>{M}$$\end{document}. We obtain a sufficient condition on phase retrieval frames for quaternionic left Hilbert module (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document} of the form {emTng}m,n is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}T_{n}g\}_{m,\,n\in {\mathbb {N}}_{M}}$$\end{document}, where {em}m is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{M}}$$\end{document} is an orthonormal basis for (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document} and (center dot,center dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cdot ,\,\cdot )$$\end{document} is the Euclidean inner product on HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}<^>{M}$$\end{document}. It is worth noting that {em}m is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{M}}$$\end{document} is not necessarily 1Me2 pi im center dot Mm is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \frac{1}{\sqrt{M}}e<^>{\frac{2\pi im\cdot }{M}}\right\} _{m\in {\mathbb {N}}_{M}}$$\end{document}, and that our method also applies to phase retrievability in CM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}<^>{M}$$\end{document}. For the real Hilbert space (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document} induced by (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document}, we present a sufficient condition on phase retrieval frames {emTng}m is an element of N4M,n is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}T_{n}g\}_{m\in {\mathbb {N}}_{4M},\,n\in {\mathbb {N}}_{M}}$$\end{document}, where {em}m is an element of N4M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{4M}}$$\end{document} is an orthonormal basis for (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document}. We also give a method to construct and verify general phase retrieval frames for (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document}. Finally, some examples are provided to illustrate the generality of our theory.

Keyword:

Frame Quaternion Phase retrieval

Author Community:

  • [ 1 ] [Yang, Ming]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yun-Zhang]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 李云章

    [Li, Yun-Zhang]Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY

ISSN: 0126-6705

Year: 2024

Issue: 2

Volume: 47

1 . 2 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 4

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:961/5356530
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.