Indexed by:
Abstract:
The study on forecasting demand for online car-hailing holds substantial implications for both online car-hailing platforms and government agencies responsible for traffic management. This research proposes an enhanced Empirical Mode Decomposition Long-short Term Memory Neural Network (EMD-LSTM) model. EMD technique reduces noise and extracts stable intrinsic mode functions (IMF) from the original time series. Genetic algorithm is deployed to improve the K-Means clustering for determining optimal clusters. These sub time series serve as input for the prediction model, with combined results giving final predictions. Experimental data from Didi includes Haikou's car-hailing orders from May to October 2017 and Beijing's from January to May 2020. Results show improved EMD-LSTM reduces instability and captures characteristics better. Compared to unmodified EMD-LSTM, RMSE decreases by 3.50%, 6.81%, and 6.81% for the three datasets, and by 30.97%, 20%, and 9.24% respectively compared to single LSTM model.
Keyword:
Reprint Author's Address:
Email:
Source :
TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH
ISSN: 1942-7867
Year: 2024
2 . 8 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: