• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhou, Wenbin (Zhou, Wenbin.) | Hu, Yanke (Hu, Yanke.) | Ma, Hualin (Ma, Hualin.) | Zou, Yangbin (Zou, Yangbin.) | Yu, Liang (Yu, Liang.) | Xia, Guodong (Xia, Guodong.)

Indexed by:

EI Scopus SCIE

Abstract:

In recent years, surfaces with nanocavities have been identified to considerably improve boiling heat transfer, that is highly promising for advanced thermal energy systems. To boost developments in nanostructured boiling surfaces, effects of nanocavity geometry on nucleate boiling at the nanoscale are systematically studied for the first time by utilizing molecular dynamics simulation. Three typical nanocavities with rectangular, semicircular, and triangular cross-sectional shapes are constructed, which have the identical width and depth (8 nm and 4 nm). Moreover, three representative wetting conditions corresponding to different solid-liquid interaction strengths are further considered to provide a comprehensive understanding of geometry effects. The results manifest that nanocavity geometry effect on nucleate boiling can be attributed to the differences in their solid-liquid contact area and solid-liquid interactions play a vital role in reinforcement effectiveness. When the solid-liquid interaction is sufficiently strong (energy coefficient equals 1.5, termed ultra-superhydrophilicity), variations in nanocavity geometries will induce remarkable effects on boiling performance. Among three geometric configurations, the rectangular nanocavity exhibits the highest heat transfer efficiency and achieves maximum boiling enhancement, including significant improvements in bubble nucleation and growth, as well as critical heat flux. This study provides an essential insight into nanoscale boiling reinforcement mechanism.

Keyword:

Solid-liquid interactions Enhancement mechanism Geometry effect Nanocavity Molecular dynamics simulation Nucleate boiling

Author Community:

  • [ 1 ] [Zhou, Wenbin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Yanke]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Ma, Hualin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Zou, Yangbin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, Liang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 6 ] [Xia, Guodong]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Zhou, Wenbin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Related Article:

Source :

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

ISSN: 0017-9310

Year: 2024

Volume: 225

5 . 2 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 4

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:614/5305066
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.