• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Dong, Shanwen (Dong, Shanwen.) | Zeng, Yong (Zeng, Yong.) | Lu, Qian (Lu, Qian.) | Zhao, Xueya (Zhao, Xueya.) | Jiang, Fan (Jiang, Fan.) | Chen, Shujun (Chen, Shujun.) | Yang, Zhidong (Yang, Zhidong.)

Indexed by:

EI Scopus SCIE

Abstract:

By adjusting the inter-wire arc (IWA) posture, the skew-coupling arc (SCA) is proposed to address the polar effect in the cross arc, enabling decoupling control of heat, force, and mass transfer. Despite the advancement, the arc stabilization mechanism in the SCA remains poorly understood, hindering its application as a heat source in welding or additive manufacturing. To elucidate this mechanism, various influencing factors such as power supply characteristics, shielding gas composition, IWA posture, and plasma main arc (PMA) were analyzed. An electrical signal and high-speed camera synchronous acquisition system was utilized to analyze current-voltage waveforms and arc shapes. The results indicate that the arc stability of the SCA can be enhanced by ensuring specific external conditions. Constant voltage power supply enhances the self-regulating effect of the IWA, maintaining the IWA and the PMA in a hybrid state at all times. Introducing an oxidizing gas to the shielding gas can effectively suppress cathode spot climbing and stabilize the IWA. The vertical spacing between wires directly impacts the PMA deflection, while the wire horizontal angle has a lesser effect. The heat-regulating effect of the PMA column boosts the arc length regulation by the IWA. The current and the ion gas flow rate in the PMA minimally influence the SCA stability. These findings can provide a solid foundation for further applications of the SCA as heat source.

Keyword:

Skew -coupling arc (SCA) Arc stability Regulating effect Inter-wire arc (IWA) Plasma main arc (PMA)

Author Community:

  • [ 1 ] [Dong, Shanwen]Yancheng Inst Technol, Sch Mech Engn, Yancheng, Peoples R China
  • [ 2 ] [Zeng, Yong]Yancheng Inst Technol, Sch Mech Engn, Yancheng, Peoples R China
  • [ 3 ] [Lu, Qian]Yancheng Inst Technol, Sch Mech Engn, Yancheng, Peoples R China
  • [ 4 ] [Zhao, Xueya]Yancheng Inst Technol, Sch Mech Engn, Yancheng, Peoples R China
  • [ 5 ] [Jiang, Fan]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing, Peoples R China
  • [ 6 ] [Chen, Shujun]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing, Peoples R China
  • [ 7 ] [Dong, Shanwen]Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang, Peoples R China
  • [ 8 ] [Yang, Zhidong]Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T

ISSN: 2238-7854

Year: 2024

Volume: 31

Page: 83-92

6 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:1050/5326356
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.