• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Du (Wang, Du.) | Ji, Changwei (Ji, Changwei.) (Scholars:纪常伟) | Wang, Shuofeng (Wang, Shuofeng.) | Meng, Hao (Meng, Hao.) | Wang, Zhe (Wang, Zhe.) | Yang, Jinxin (Yang, Jinxin.)

Indexed by:

EI Scopus SCIE

Abstract:

In this study, the laminar premixed CH4/H-2/air combustion was investigated by the global reaction pathway (GP) analysis and sensitivity analysis of physical parameters for individual species under various hydrogen fractions (alpha) and pressures to further understand the blended fuel combustion and explore two questions: (1) whether extra GPs exist in the blended fuel combustion beyond the pure fuel reacting system; (2) whether there are insignificant species in pure CH4 and H-2 combustion showing large influence in binary fuel combustion. Results show that different GPs dominate fuel oxidation under different alpha. The increasing radicals are responsible for the linearly increasing laminar burning velocity (LBV) at small alpha, and the transition from CH4 chemistry to H-2 chemistry is responsible for the nonlinearly increasing LBV at large alpha. Extra GPs are shown and play a role in the binary fuel combustion, but they are still within the CH4 chemistry. For most species, the sensitivity of transport and thermal parameters to laminar burning velocity were found has a positive relationship with their maximum mole fraction at different alpha. No species were found only important to the binary fuel, however, some species such as H2O show higher sensitivity for binary fuel combustion than that of pure fuel combustion. The changes of GPs with increasing pressure verifies that CH4 chemistry is dominant for small alpha (20%) combustion while H-2 chemistry dominant is for large alpha (80%) combustion. Most physical parameter sensitivity will increase with increasing combustion pressure, which should be paid more attention in high-pressure combustion.

Keyword:

Combustion Reaction pathway Hydrogen Methane Sensitivity analysis

Author Community:

  • [ 1 ] [Ji, Changwei]Beijing Univ Technol, Beijing Lab New Energy Vehicles, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Changwei]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 纪常伟

    [Ji, Changwei]Beijing Univ Technol, Beijing Lab New Energy Vehicles, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

FUEL

ISSN: 0016-2361

Year: 2020

Volume: 259

7 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 21

SCOPUS Cited Count: 23

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:820/5404542
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.