Indexed by:
Abstract:
The problem of over fitting in DBN is extensively focused on since different networks may respond differently to an unknown input. In this study, a regularization-reinforced deep belief network (RrDBN) is proposed to improve generalization ability. In RrDBN, a special regularization-reinforced term is developed to make the weights in the unsupervised training process to attain a minimum magnitude. Then, the non-contributing weights are reduced and the resultant network can represent the inter-relations of the input-output characteristics. Therefore, the optimization process is able to obtain the minimum-magnitude weights of RrDBN. Moreover, contrastive divergence is introduced to increase RrDBN's convergence speed. Finally, RrDBN is applied to hand-written numbers classification and water quality prediction. The results of the experiments show that RrDBN can improve the recognition performance with less recognition errors than other existing methods.
Keyword:
Reprint Author's Address:
Email:
Source :
NATURAL COMPUTING
ISSN: 1567-7818
Year: 2019
Issue: 4
Volume: 18
Page: 721-733
2 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:147
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: