Indexed by:
Abstract:
Aiming at the question that the effluent biochemical oxygen demand (BOD) in sewage treatment is difficult to measure accurately in real time, a soft-measurement model of recursive radial basis function (RRBF) neural network based on PSO algorithm (PSO-RRBF) is proposed to predict the effluent BOD. Firstly, the PSO algorithm is put forward to determine not only the input variables but also the structure of the RRBF effectively. Secondly, the gradient descent method is used to adjust the weights, center and width. Finally, the soft-measurement model is applied to the actual sewage treatment process. The experimental results show that the soft-measurement model has a more compact structure and its accuracy is improved compared with other models. © 2019 Technical Committee on Control Theory, Chinese Association of Automation.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1934-1768
Year: 2019
Volume: 2019-July
Page: 1593-1597
Language: English
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: