Indexed by:
Abstract:
We show that all nonnegative solutions of the critical semilinear elliptic equation involving the regional fractional Laplacian are locally universally bounded. This strongly contrasts with the standard fractional Laplacian case. Secondly, we consider the fractional critical elliptic equations with nonnegative potentials. We prove compactness of solutions provided the potentials only have non-degenerate zeros. Corresponding to Schoen's Weyl tensor vanishing conjecture for the Yamabe equation on manifolds, we establish a Laplacian vanishing rate of the potentials at blow-up points of solutions. (C) 2018 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF FUNCTIONAL ANALYSIS
ISSN: 0022-1236
Year: 2018
Issue: 9
Volume: 275
Page: 2333-2372
1 . 7 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:63
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: