Indexed by:
Abstract:
A facile colloidal solution method has been developed for the fast, scalable synthesis of orthorhombic@cubic core-shell nonstoichiometric Cu5FeS4 icosahedral nanoparticles. Such nanoparticles contain high-density twin boundaries in the form of fivefold twins. Spark plasma sintering consolidates the nanoparticles into nanostructured pellets, which retain high-density twin boundaries and a tuned fraction of the secondary phase Fe-deficient cubic Cu5FeS4. As a result, the thermal and electrical transport properties are synergistically optimized, leading to an enhanced zT of approximate to 0.62 at 710 K, which is about 51% higher than that of single-phase Cu5FeS4. This study provides an energy-efficient approach to realize twin engineering in nonstoichiometric Cu5FeS4 nanomaterials for high-performance thermoelectrics.
Keyword:
Reprint Author's Address:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2018
Issue: 10
Volume: 28
1 9 . 0 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:260
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 71
SCOPUS Cited Count: 74
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1