Indexed by:
Abstract:
Basing on qPCR assay and 15N isotope tracing technique, the abundance, rate, role, and microbial interaction of anammox was investigated in three WWTPs of anaerobic-anoxic-oxic (AAO) process. Results showed anammox bacteria was detected in all samples with abundance of 106~107copies/g VSS, and rate of 0.11~0.90 μmol N/(g VSS·h). As for the microbial interaction among anammox and other microbial process, heterotrophic denitrification was not only a more important provider but a stronger competitor for NO2-, compared with autotrophic nitrification, in which AOB was the major NO2- producer. The roles of anammox to ammonia oxidation and nitrogen removal were calculated to be 2.55%~7.89% and 2.07%~6.59%, respectively, and the role of anammox in summer was higher than that in winter. Further, canonical correspondence analysis (CCA) proved the temperature is one of the key environmental variables, and nitri- & denitri-rates were primary microbial factors for anammox. Results suggested although the abundance of anammox bacteria was not high, the widespread of anammox played an overlooked role of N removal, which supplemented N balance calculation in biological wastewater treatment process, and provided theoretical support for the realization of anammox in the field of low-NH4+-N sewage treatment. © 2016, Editorial Board of China Environmental Science. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
China Environmental Science
ISSN: 1000-6923
Year: 2016
Issue: 7
Volume: 36
Page: 1988-1996
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3