• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

He, Tao (He, Tao.) | Zhang, Yong-Zheng (Zhang, Yong-Zheng.) | Wu, Hao (Wu, Hao.) | Kong, Xiang-Jing (Kong, Xiang-Jing.) | Liu, Xiao-Min (Liu, Xiao-Min.) | Xie, Lin-Hua (Xie, Lin-Hua.) | Dou, Yibo (Dou, Yibo.) | Li, Jian-Rong (Li, Jian-Rong.) (Scholars:李建荣)

Indexed by:

Scopus SCIE PubMed

Abstract:

Metal-organic frameworks (MOFs) have shown great potential for application in various fields, including CO2 capture and proton conduction. For promoting their practical applications, both optimization of a given property and enhancement of chemical stability are crucial. In this work, three base-stable isostructural MOFs, [Ni-8(OH)(4)(H2O)(2)(BDP-X)(6)] (Ni-BDP-X; H2BDP= 1,4-bis(4-pyrazolyl)benzene, X= CHO, CN, COOH) with different functional groups, are designed, synthesized, and used in CO2 capture and proton conduction experiments. They possess face-centered cubic topological structures with functional nanoscale cavities. Importantly, these MOFs are fairly stable to maintain their structures in boiling water and 4M sodium hydroxide solution at room temperature. Functionalization endows them with tunable properties. In gas adsorption studies, these MOFs exhibit selective adsorption of CO2 over CH4 and N-2, and in particular the introduction of COOH groups provides the highest selectivity. In addition, the COOH-functionalized Ni-BDP exhibits a high proton conductivity of 2.22 x 10(-3) Scm(-1) at 80 degrees C and approximately 97% relative humidity.

Keyword:

Ni-8 clusters selective CO2 adsorption proton conduction polypyrazolates chemical stability

Author Community:

  • [ 1 ] [He, Tao]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong-Zheng]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Hao]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Kong, Xiang-Jing]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Xiao-Min]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Xie, Lin-Hua]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Dou, Yibo]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Li, Jian-Rong]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 李建荣

    [Xie, Lin-Hua]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China;;[Li, Jian-Rong]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CHEMPHYSCHEM

ISSN: 1439-4235

Year: 2017

Issue: 22

Volume: 18

Page: 3245-3252

2 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:212

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 45

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:650/5335917
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.