Indexed by:
Abstract:
The aim of this study is to recognize human emotions by electroencephalographic (EEG) signals. The innovation of our research methods involves two aspects: First, we integrate the spatial characteristics, frequency domain, and temporal characteristics of the EEG signals, and map them to a two-dimensional image. With these images, we build a series of EEG Multidimensional Feature Image (EEG MFI) sequences to represent the emotion variation with EEG signals. Second, we construct a hybrid deep neural network to deal with the EEG MFI sequences to recognize human emotional states where the hybrid deep neural network combined the Convolution Neural Networks (CNN) and Long Short-Term-Memory (LSTM) Recurrent Neural Networks (RNN). Empirical research is carried out with the open-source dataset DEAP (a Dataset for Emotion Analysis using EEG, Physiological, and video signals) using our method, and the results demonstrate the significant improvements over current state-of-the-art approaches in this field. The average emotion classification accuracy of each subject with CLRNN (the hybrid neural networks that we proposed in this study) is 75.21%.
Keyword:
Reprint Author's Address:
Source :
APPLIED SCIENCES-BASEL
Year: 2017
Issue: 10
Volume: 7
2 . 7 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:165
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 107
SCOPUS Cited Count: 146
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: