Indexed by:
Abstract:
Superhydrophobic surfaces with self-cleaning properties have been developed based on roughness on the micro- and nanometer scales and low-energy surfaces. However, such surfaces are fragile and stop functioning when exposed to oil. Addressing these challenges, here we show an ultrarobust self-cleaning surface fabricated by a process of metal electrodeposition of a rough structure that is subsequently coated with fluorinated metal-oxide nanoparticles. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were employed to characterize the surfaces. The micro and nanoscale roughness jointly with the low surface energy imparted by the fluorinated nanoparticles yielded surfaces with water contact angle of 164.1 degrees and a sliding angle of 3.2 degrees. Most interestingly, the surface exhibits fascinating mechanical stability after finger-wipe, knife-scratch, sand abrasion, and sandpaper abrasion tests. It is found that the surface with superamphiphobic properties has excellent repellency toward common corrosive liquids and low-surface-energy substances. Amazingly, the surface exhibited excellent self-cleaning ability and remained intact even after its top layer was exposed to SO abrasion cycles with sandpaper and oil contamination. It is believed that this simple, unique, and practical method can provide new approaches for effectively solving the stability issue of superhydrophobic surfaces and could extend to a variety of metallic materials.
Keyword:
Reprint Author's Address:
Email:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2017
Issue: 19
Volume: 9
Page: 16571-16580
9 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:287
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 101
SCOPUS Cited Count: 106
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1