• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:李云章

Refining:

Source

Submit Unfold

Co-Author

Submit Unfold

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 14 >
Phase Retrieval in Quaternion Euclidean Spaces SCIE
期刊论文 | 2024 , 47 (2) | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
WoS CC Cited Count: 4
Abstract&Keyword Cite

Abstract :

Quaternion algebra is a noncommutative associative algebra. Noncommutativity limits the flexibility of computation and makes analysis related to quaternions nontrivial and challenging. Due to its applications in signal analysis and image processing, quaternionic Fourier analysis has received increasing attention in recent years. This paper addresses phase retrievability in quaternion Euclidean spaces HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}<^>{M}$$\end{document}. We obtain a sufficient condition on phase retrieval frames for quaternionic left Hilbert module (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document} of the form {emTng}m,n is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}T_{n}g\}_{m,\,n\in {\mathbb {N}}_{M}}$$\end{document}, where {em}m is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{M}}$$\end{document} is an orthonormal basis for (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document} and (center dot,center dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\cdot ,\,\cdot )$$\end{document} is the Euclidean inner product on HM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}<^>{M}$$\end{document}. It is worth noting that {em}m is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{M}}$$\end{document} is not necessarily 1Me2 pi im center dot Mm is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \frac{1}{\sqrt{M}}e<^>{\frac{2\pi im\cdot }{M}}\right\} _{m\in {\mathbb {N}}_{M}}$$\end{document}, and that our method also applies to phase retrievability in CM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}<^>{M}$$\end{document}. For the real Hilbert space (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document} induced by (HM,(center dot,center dot))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,(\cdot ,\,\cdot )\big )$$\end{document}, we present a sufficient condition on phase retrieval frames {emTng}m is an element of N4M,n is an element of NM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}T_{n}g\}_{m\in {\mathbb {N}}_{4M},\,n\in {\mathbb {N}}_{M}}$$\end{document}, where {em}m is an element of N4M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e_{m}\}_{m\in {\mathbb {N}}_{4M}}$$\end{document} is an orthonormal basis for (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document}. We also give a method to construct and verify general phase retrieval frames for (HM,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big ({\mathbb {H}}<^>{M},\,\langle \cdot ,\,\cdot \rangle \big )$$\end{document}. Finally, some examples are provided to illustrate the generality of our theory.

Keyword :

Frame Frame Quaternion Quaternion Phase retrieval Phase retrieval

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, Ming , Li, Yun-Zhang . Phase Retrieval in Quaternion Euclidean Spaces [J]. | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY , 2024 , 47 (2) .
MLA Yang, Ming 等. "Phase Retrieval in Quaternion Euclidean Spaces" . | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY 47 . 2 (2024) .
APA Yang, Ming , Li, Yun-Zhang . Phase Retrieval in Quaternion Euclidean Spaces . | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY , 2024 , 47 (2) .
Export to NoteExpress RIS BibTex
Gabor frame multipliers and Parseval duals on the half real line SCIE
期刊论文 | 2024 , 22 (04) | INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING
Abstract&Keyword Cite

Abstract :

Recently, Gabor analysis on locally compact abelian (LCA) groups has become the focus of an active research. In practice, the time variable cannot be negative. The half real line R+ = (0,infinity) is an LCA group under multiplication and the usual topology, with the Haar measure d mu = dx/x. This paper addresses Gabor frame multipliers and Parseval duals for L-2(R+, d mu). We introduce and characterize Gabor frame multipliers and Parseval Gabor frame multipliers based on Zak transform matrices. Our Zak transform matrix is essentially different from the conventional Zibulski-Zeevi matrix. It allows us to define Gabor frame generators by designing suitable matrix-valued functions of finite size. We also prove that an arbitrary Gabor frame g(g, a, b) admits a Parseval dual frame/tight dual frame whenever ln a. In b are rational numbers not greater than 1/2.

Keyword :

Gabor frame Gabor frame Parseval Gabor frame multiplier Parseval Gabor frame multiplier Frame Frame Parseval dual Parseval dual Gabor frame multiplier Gabor frame multiplier

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, Ming , Li, Yun-Zhang . Gabor frame multipliers and Parseval duals on the half real line [J]. | INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING , 2024 , 22 (04) .
MLA Yang, Ming 等. "Gabor frame multipliers and Parseval duals on the half real line" . | INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING 22 . 04 (2024) .
APA Yang, Ming , Li, Yun-Zhang . Gabor frame multipliers and Parseval duals on the half real line . | INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING , 2024 , 22 (04) .
Export to NoteExpress RIS BibTex
Conjugate phase retrieval on general Hilbert spaces SCIE
期刊论文 | 2024 , 72 (17) , 2845-2878 | LINEAR & MULTILINEAR ALGEBRA
Abstract&Keyword Cite

Abstract :

A conjugation on a Hilbert space H means an antilinear bounded operator that the squares to the identity, which generalizes the traditional conjugation on complex Euclidean spaces. In this paper, with the help of normalized conjugation we introduce the notion of conjugate phase retrieval on general Hilbert spaces. We characterize frames that do conjugate phase retrieval; prove that every conjugate phase retrieval frame for H consisting of all real vectors has the complement property in H, and the converse is true if dim(H) <= 2; and also prove that a small perturbation of conjugate phase retrieval frame still gives a conjugate phase retrieval frame if dim(H) < infinity, but it is false if dim(H) = infinity.

Keyword :

complement property complement property Frame Frame conjugate phase retrieval conjugate phase retrieval conjugation conjugation phase retrieval phase retrieval

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Ya-Nan , Li, Yun-Zhang . Conjugate phase retrieval on general Hilbert spaces [J]. | LINEAR & MULTILINEAR ALGEBRA , 2024 , 72 (17) : 2845-2878 .
MLA Li, Ya-Nan 等. "Conjugate phase retrieval on general Hilbert spaces" . | LINEAR & MULTILINEAR ALGEBRA 72 . 17 (2024) : 2845-2878 .
APA Li, Ya-Nan , Li, Yun-Zhang . Conjugate phase retrieval on general Hilbert spaces . | LINEAR & MULTILINEAR ALGEBRA , 2024 , 72 (17) , 2845-2878 .
Export to NoteExpress RIS BibTex
Frames and Dual Frames for Krein Spaces SCIE
期刊论文 | 2024 , 45 (4-6) , 355-372 | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
Abstract&Keyword Cite

Abstract :

In last decades, the operator theory of Krein spaces, Krein space approaches, and various generalizations of frames have interested many mathematicians due to their potential applications in mathematics and engineering. This paper addresses the frame theory for Krein spaces. We present some properties of J-orthonormal bases, Parseval frames and frames for Krein spaces, and a parametric expression of all duals of an arbitrarily given frame in Krein spaces. This study shows that the frame theory for Krein spaces is not a direct generalization of the frame theory for Hilbert spaces.

Keyword :

Frame Frame J-orthonormal basis J-orthonormal basis Parseval frame Parseval frame Krein space Krein space dual frame dual frame

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Yun-Zhang , Dong, Rui-Qi . Frames and Dual Frames for Krein Spaces [J]. | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION , 2024 , 45 (4-6) : 355-372 .
MLA Li, Yun-Zhang 等. "Frames and Dual Frames for Krein Spaces" . | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 45 . 4-6 (2024) : 355-372 .
APA Li, Yun-Zhang , Dong, Rui-Qi . Frames and Dual Frames for Krein Spaces . | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION , 2024 , 45 (4-6) , 355-372 .
Export to NoteExpress RIS BibTex
What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces SCIE
期刊论文 | 2024 , 36 (6) , 1585-1601 | FORUM MATHEMATICUM
WoS CC Cited Count: 3
Abstract&Keyword Cite

Abstract :

Quaternion algebra H is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses conjugate phase retrieval problem in the quaternion Euclidean space H-M with M >= 2. Write C-eta = {xi : xi = xi(0) + beta eta, xi(0), beta is an element of R} for eta is an element of {i, j, k}. We remark that not only C-eta(M)-vectors cannot allow traditional conjugate phase retrieval in H-M, but also C-i(i)M boolean OR C-j(M)-complex vectors cannot allow phase retrieval in H-M . We are devoted to conjugate phase retrieval of C-i(M) boolean OR C-j(M) -complex vectors in H-M, where "conjugate" is not the traditional conjugate. We introduce the notions of conjugation, maximal commutative subset and conjugate phase retrieval. Using the phase lifting techniques, we present some sufficient conditions on complex vectors allowing conjugate phase retrieval. And some examples are also provided to illustrate the generality of our theory.

Keyword :

phaselift phaselift quaternion quaternion conjugation conjugation frame frame Conjugate phase retrieval Conjugate phase retrieval

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Yun-Zhang , Yang, Ming . What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces [J]. | FORUM MATHEMATICUM , 2024 , 36 (6) : 1585-1601 .
MLA Li, Yun-Zhang 等. "What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces" . | FORUM MATHEMATICUM 36 . 6 (2024) : 1585-1601 .
APA Li, Yun-Zhang , Yang, Ming . What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces . | FORUM MATHEMATICUM , 2024 , 36 (6) , 1585-1601 .
Export to NoteExpress RIS BibTex
Making more approximate oblique dual frame pairs SCIE
期刊论文 | 2024 , 15 (2) | ANNALS OF FUNCTIONAL ANALYSIS
Abstract&Keyword Cite

Abstract :

The concept of approximate oblique dual frame was introduced by Diaz, Heineken and Morillas. It is more general than traditional dual frame, oblique dual frame, and approximate dual frame. This paper addresses constructing more approximate oblique dual frame pairs starting from one given oblique dual frame pair. Using "analysis and synthesis operator", "portrait", and "gap" perturbation techniques, we present several sufficient conditions for constructing approximate oblique dual frame pairs under the general Hilbert space setting. As an application, we then focus on constructing approximate oblique dual frame pairs in shift-invariant subspaces of L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}(\mathbb R)$$\end{document}.

Keyword :

Frame Frame Approximate dual frame Approximate dual frame Approximate oblique dual frame Approximate oblique dual frame Oblique dual frame Oblique dual frame Dual frame Dual frame

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Yun-Zhang , Wu, Li-Juan . Making more approximate oblique dual frame pairs [J]. | ANNALS OF FUNCTIONAL ANALYSIS , 2024 , 15 (2) .
MLA Li, Yun-Zhang 等. "Making more approximate oblique dual frame pairs" . | ANNALS OF FUNCTIONAL ANALYSIS 15 . 2 (2024) .
APA Li, Yun-Zhang , Wu, Li-Juan . Making more approximate oblique dual frame pairs . | ANNALS OF FUNCTIONAL ANALYSIS , 2024 , 15 (2) .
Export to NoteExpress RIS BibTex
Generalized Dual Hilbert-Schmidt Frames and Their Topological Properties SCIE
期刊论文 | 2024 , 79 (2) | RESULTS IN MATHEMATICS
Abstract&Keyword Cite

Abstract :

This paper addresses the Hilbert-Schmidt frame (HS-frame) theory. We introduce the concept of generalized dual HS-frame (g-dual HS-frame) which generalizes that of g-dual frame. We prove that two equivalent HS-frames form a g-dual HS-frame pair, characterize operators on l2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\ell <^>2$$\end{document} that transform a pair of HS-Riesz bases into a g-dual HS-frame pair, and present a parametric expression of all g-dual HS-frames of an arbitrarily given HS-frame. Also the perturbation-stability and topological properties of g-dual HS-frames are investigated. Finally, applying our results, we not only recover some known results but also derive some new results in the classical Hilbert space frame setting.

Keyword :

Frame Frame HS-frame HS-frame topological property topological property perturbation perturbation g-dual g-dual

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Dong, Rui-Qi , Li, Yun-Zhang . Generalized Dual Hilbert-Schmidt Frames and Their Topological Properties [J]. | RESULTS IN MATHEMATICS , 2024 , 79 (2) .
MLA Dong, Rui-Qi 等. "Generalized Dual Hilbert-Schmidt Frames and Their Topological Properties" . | RESULTS IN MATHEMATICS 79 . 2 (2024) .
APA Dong, Rui-Qi , Li, Yun-Zhang . Generalized Dual Hilbert-Schmidt Frames and Their Topological Properties . | RESULTS IN MATHEMATICS , 2024 , 79 (2) .
Export to NoteExpress RIS BibTex
A time domain characterization of weak Gabor dual frames on the half real line SCIE
期刊论文 | 2023 , 37 (7) , 2237-2249 | FILOMAT
Abstract&Keyword Cite

Abstract :

Due to R+ not being a group under addition, L2(R+) admits no traditional Gabor system as L2(R). Observing that R+ is a group under a new addition "circle plus", we in this paper introduce and characterize a class of weak Gabor dual frames in L2(R+) based on this new group structure. Some examples are also provided.

Keyword :

Gabor frame Gabor frame Gabor dual Gabor dual Half real line Half real line Frame Frame Weak Gabor dual Weak Gabor dual

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, Yan , Li, Yun-Zhang . A time domain characterization of weak Gabor dual frames on the half real line [J]. | FILOMAT , 2023 , 37 (7) : 2237-2249 .
MLA Zhang, Yan 等. "A time domain characterization of weak Gabor dual frames on the half real line" . | FILOMAT 37 . 7 (2023) : 2237-2249 .
APA Zhang, Yan , Li, Yun-Zhang . A time domain characterization of weak Gabor dual frames on the half real line . | FILOMAT , 2023 , 37 (7) , 2237-2249 .
Export to NoteExpress RIS BibTex
Quaternionic Gabor frame characterization and the density theorem (vol 17, 64, 2023) SCIE
期刊论文 | 2023 , 17 (4) | BANACH JOURNAL OF MATHEMATICAL ANALYSIS
Abstract&Keyword Cite

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Zhang, Xiao-Li , Li, Yun-Zhang . Quaternionic Gabor frame characterization and the density theorem (vol 17, 64, 2023) [J]. | BANACH JOURNAL OF MATHEMATICAL ANALYSIS , 2023 , 17 (4) .
MLA Zhang, Xiao-Li 等. "Quaternionic Gabor frame characterization and the density theorem (vol 17, 64, 2023)" . | BANACH JOURNAL OF MATHEMATICAL ANALYSIS 17 . 4 (2023) .
APA Zhang, Xiao-Li , Li, Yun-Zhang . Quaternionic Gabor frame characterization and the density theorem (vol 17, 64, 2023) . | BANACH JOURNAL OF MATHEMATICAL ANALYSIS , 2023 , 17 (4) .
Export to NoteExpress RIS BibTex
A class of reproducing systems generated by a finite family in L-2(R+) SCIE
期刊论文 | 2023 , 46 (3) | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY
Abstract&Keyword Cite

Abstract :

Reproducing systems in L-2(R) such as wavelet and Gabor dual frames have been extensively studied, but reducing systems in L-2(R+) with R+ = (0, 8) have not. In practice, L-2(R+) models the causal space since the time variable cannot be negative. Due to R+ not being a group under addition,L-2(R+) admits no nontrivial shift invariant system and thus admits no traditional wavelet or Gabor analysis. However, L-2(R+) admits nontrivial dilation systems due to R+ being a group under multiplication. This paper addresses the frame theory of a class of dilation-and-modulation (MD) systems generated by a finite family in L-2(R+). We obtain a parametric expression of MD-frames, and a density theorem for such MD-systems which is parallel to that of traditional Gabor systems in L-2(R). It is well known that an arbitrary Gabor frame must admit dual frames with the same structure. Interestingly, it is not the case for MD-frames. We prove that an MD-frame admits MD-dual frames if and only if log(b) a is an integer, where a and b are dilation and modulation parameters, respectively. And in this case, we characterize and express all MD-dual generators for an arbitrarily given MD-frame. Some examples are also provided.

Keyword :

Riesz basis Riesz basis MD - system MD - system MD-dual frame MD-dual frame MD-frame MD-frame Frame Frame

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Ya-Nan , Li, Yun-Zhang . A class of reproducing systems generated by a finite family in L-2(R+) [J]. | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY , 2023 , 46 (3) .
MLA Li, Ya-Nan 等. "A class of reproducing systems generated by a finite family in L-2(R+)" . | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY 46 . 3 (2023) .
APA Li, Ya-Nan , Li, Yun-Zhang . A class of reproducing systems generated by a finite family in L-2(R+) . | BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY , 2023 , 46 (3) .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 14 >

Export

Results:

Selected

to

Format:
Online/Total:1383/5221661
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.