• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Xinzheng (Lu, Xinzheng.) | Li, Yi (Li, Yi.) | Guan, Hong (Guan, Hong.) | Ying, Mingjian (Ying, Mingjian.)

收录:

Scopus SCIE

摘要:

A number of disastrous incidents have indicated that extreme fires can act as a trigger event to initiate the progressive collapse of reinforced concrete (RC) structures. Hence, research on progressive collapse risks of RC structures under extreme fires is most important. However, limited studies have been undertaken in the fire-induced progressive collapse of tall and super-tall RC buildings. Hence, a high-performance finite element model was developed for this study to simulate the mechanical behavior of RC members in fire-induced progressive collapse. Fiber beam and multi-layer shell elements were used, in conjunction with appropriate material constitutive laws and elemental failure criteria under high temperature conditions. Extreme fire scenarios were also considered, based on the actual fire-induced progressive collapse events of the WTC towers and the Windsor Tower. The simulation results indicated that a progressive collapse of a super-tall building was triggered by the flexural failure of the peripheral columns, approximately 7 h after being exposed to fire. The bending deformations of the peripheral columns increased significantly, due to the outward thermal expansion of the upper floors and the inward contraction of the lower floors, a result of the fire-induced damage. The results also revealed that, when multiple stories are subjected to fire, the internal forces in the components are redistributed in the horizontal and vertical directions by way of the Vierendeel truss mechanism, leading to a maximum increase (of approximately 100%) of the axial forces in the columns. The present work identified the mechanisms of the fire-induced progressive collapse of a typical RC super-tall building, and provided an effective analysis framework for further research on the fire safety of tall and super-tall RC buildings.

关键词:

Collapse mode Progressive collapse Super-tall building Extreme fire Frame-core tube structure

作者机构:

  • [ 1 ] [Lu, Xinzheng]Tsinghua Univ, Dept Civil Engn, Minist Educ, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China
  • [ 2 ] [Ying, Mingjian]Tsinghua Univ, Dept Civil Engn, Minist Educ, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China
  • [ 3 ] [Li, Yi]Beijing Univ Technol, Beijing Collaborat Innovat Ctr Metropolitan Trans, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Guan, Hong]Griffith Univ Gold Coast Campus, Griffith Sch Engn, Southport, Qld 4222, Australia

通讯作者信息:

  • [Lu, Xinzheng]Tsinghua Univ, Dept Civil Engn, Minist Educ, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FIRE TECHNOLOGY

ISSN: 0015-2684

年份: 2017

期: 1

卷: 53

页码: 107-133

3 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:287

中科院分区:3

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 29

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

在线人数/总访问数:691/4289941
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司